GUIDELINES ON OPERATIONAL INFORMATION FOR MASTERS OF PASSENGER SHIPS FOR SAFE RETURN TO PORT BY OWN POWER OR UNDER TOW

1. The Maritime Safety Committee, at its eighty-ninth session (11 to 20 May 2011), having considered a proposal by the Sub-Committee on Stability and Load Lines and on Fishing Vessels Safety, at its fifty-third session, approved the Guidelines on operational information for masters of passenger ships for safe return to port by own power or under tow, set out in the annex, aiming at providing additional guidance for the uniform implementation of SOLAS regulation II-1/8-1, which is expected to be adopted by MSC 90 (May 2012)*.

2. Member Governments are invited to bring the annexed Guidelines to the attention of owners of passenger ships, operators and all other parties concerned.

*The draft amendment to SOLAS regulation II-1/8-1 was approved by MSC 89, and is contained in the report of the Committee (MSC 89/25/Add.1, annex 17). Owners of passenger ships, masters, operators and all other parties concerned should prepare in advance for the adoption of the draft amendment to regulation II-1/8-1.
ANNEX

GUIDELINES ON OPERATIONAL INFORMATION FOR MASTERS OF PASSENGER SHIPS FOR SAFE RETURN TO PORT BY OWN POWER OR UNDER TOW

General

1 Stability information provided to the Master should be sourced from an approved stability computer situated on board the vessel or from a shore-based system and should be capable of providing information at any time.

2 The output format and units of the information supplied should be consistent with the format and units of the stability booklet in order to facilitate easy comparison.

3 Accuracy of programs using hull form with its subdivision models as their basis for stability calculations should have tolerances in accordance with the Guidelines for the approval of stability instruments (MSC.1/Circ.1229), when compared with the approved stability information; this applies equally to onboard and shore-based systems.

Onboard stability computers

4 At least two independent stability computers capable of processing the data and providing the necessary information should be installed.

5 Onboard stability computers should have an uninterruptible power supply (UPS) connected to both main and emergency switchboards.

6 The output should be within the tolerances specified in the Guidelines for the approval of stability instruments (MSC.1/Circ.1229).

7 Details of the loading condition of the ship at each departure should be input to the stability computer in order to encourage familiarity with the operation of the system and to save time on data input in the event of a casualty.

8 At least two crew members should be competent in the operation of the stability computer and capable of interpretation of the output in order to provide the required information.

9 An operation manual should be provided for the stability computer software. The manual should be printed in a language in which the operators are fully conversant.

Shore-based support

10 Owners or operators of passenger ships should ensure that their ships have prearranged, prompt access to computerized, shore-based damage stability and residual structural strength calculation programs. The output should be within the tolerances specified in the Guidelines for the approval of stability instruments (MSC.1/Circ.1229). Access to the shore-based calculation program should be available 24 hours a day. The computer model of the ship and its subdivision arrangements should be input at the commencement of the contract.

11 There should be a contract for the supply of shore-based support at all times during the validity of ship certification.
12 Shore-based support should be operational within one hour; whereby operational means the ability to input details of the conditions of the ship as instructed.

13 Shore-based support should be manned by adequately qualified persons with regard to stability and ship strength; no less than two qualified persons should be available to be on call at all times.

14 At least two independent computers capable of carrying out stability and global strength calculations should be available at all times.

15 The ship should be fitted with sufficiently reliable equipment to allow for communication with the supplier of shore-based support for all intended areas of operation.

Minimum stability and additional information requirements

16 Taking into account the most recent known loading and flooded condition of the ship and taking into account any measures that may be proposed to improve or affect the survivability of the ship, the following information should be provided:

 .1 GM transverse in any loading condition;
 .2 GZ and range;
 .3 area under the GZ curve;
 .4 maximum and actual values of free surface moments of all tanks and spaces below the bulkhead deck;
 .5 location of flooding level indicators within tanks;
 .6 draughts forward, midships and aft;
 .7 angles of heel and trim;
 .8 the effect of flooding and heel and trim angles on:
 .1 operation of essential equipment;
 .2 escape routes and evacuation times; and
 .3 effective deployment of life saving appliances;
 .9 profile areas of the ship both above and below the waterline, and means to establish their centres, in order to estimate the effects of wind pressure;
 .10 currently applied global bending moment and sheer force;
 .11 fuel consumption data accounting for estimates of increased resistance due to flooding; and
 .12 ship specific particulars relating to the Guidelines for damage control plans and information to the master (MSC.1/Circ.1245).